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Abstract 
A flexible loop filter design  for spacecraft phase-locked  receivers  is proposed. The loop filter 

is implemented as digital hardware with coefficients that are set by registers. Either a perfect 
or an imperfect integrating loop filter can be effected. This flexibility is important since  no  one 
type of loop filter is preferred for all circumstances. An imperfect integrator is preferred when, 
as is often the case for spacecraft receivers, it is important to minimize the best-lock frequency 
drift of an idling loop. A perfect integrator is preferred when the tracking performance of the 
loop is the most important consideration. 

1 Introduction 
Phase-locked  loop receivers are used on  spacecraft to provide  carrier  synchronization of the uplink. 
This is an  csscntial  function for the  demodulation of phase-shift keyed command  channels  and for 
two-way coherent  Doppler  and  range  measurement.  Such  loops  are  usually of second  order,  since 
this  provides  the  best  compromise  between  tracking  performance  and  stability for a space-based 
receiver. A second-order phase-locked loop  may  have  either a perfect  or an  imperfect  integrating 
loop  filter. The former gives the  better  tracking  performance.  The  latter is subject  to less  best-lock 
frequency  drift while idling  (that is, operating  with  no  signal,  only noise, at the  input).  For  many 
space  missions  it is important  that  the best-lock frequency  not  drift  too  much while the  carrier 
loop idles so that  acquisition is quick  when a new uplink  arrives.  In  short,  there is a trade-off  in 
the  selection of loop filter type.  Even  within a given space  mission, we might  want t o  change  the 
type of loop  filter. For those  phases of the mission for which the Doppler  dynamics  are  challenging 
we prefer a perfect  integrating  loop  filter,  optimizing  tracking  performance,  and for other  phases of 
the mission during which there  are  frequency  interruptions  in  radio  contact we prefer an  imperfect 
integrating  loop  filter,  minimizing  best-lock  frequency  drift  and  speeding  acquisition. 

The loop filter is nowadays  typically  implemented in digital  hardware.  We  propose a loop filter 
structure  that is implemented in digital  hardware  with coefficients that  are  set by registers.  The 
design in flexible enough to  accommodate  either  type of loop  filter.  Most  important,  the  loop  may 
be changed  from  one  type to  the  other by simply  rewriting  the coefficients. 

We analyze  in  this  paper  the  best-lock  frequency  drift of an  idling  phase-locked  loop receiver 
due  to  the  presence of Gaussian  (thermal  and  shot) noise at its  input  and  show  that a receiver with 
an  imperfect  integrating  loop filter drifts less than one of the  same  loop  bandwidth  with a perfect 
integrating  loop  filter.  (We  do  not  analyze  tracking  performance of a phase-locked  receiver because 
that is well documented in the  literature.)  Then we introduce  the flexible loop filter design that 
accommodates  both a perfect  and  an  imperfect  integrating  loop  filter. We begin by modeling  the 
signal  plus noise in a digital phase-locked loop receiver; this  preliminary work is necessary for the 
analysis of best-lock  frequency  drift. 

2 Modeling of a Digital Phase-Locked  Loop 
We model a digital phase-locked loop  with the signal  processing of Figure 1. Other  equivalent 
structures  are possible-a loop  implemented  with  synchronous  sampling, for example.  In  this 



paper, we think  in  terms of Figure 1 only to  make  the  discussion  specific;  but we bear 
equivalent  loop  architectures  are  subject  to  the  same  set of considerations. 
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Figure 1: Digital  phase-locked  loop  with AGC. 

The  input  to  the  digital phase-locked  loop is of the form 

J2Ps in  [wk + ~ ( k ) ]  + n ( k ) .  

We assume that  the sampling is periodic. We denote by T the  sample  period  and by k the  discrete- 
time  index.  The  nominal  phase  advance  (modulo 27r radians) of the  carrier  between  adjacent 
samples is denoted w (in  radians).  Any  deviation  from  the  nominal  phase  advance is accounted for 
in  the  phase  term Q ( k ) .  The power in  the received carrier is denoted P. 

We model  the  input noise n ( k )  as a sequence of independent noise samples,  each  Gaussian  with 
a mean of zero and a variance Nol(2T). The Gaussian  distribution is appropriate for thermal  and 
shot  noise,  which  typically  constitute  the  dominant noise of spacecraft  receivers.  We do  not  consider 
phase  noise,  such as might  originate in the  transmitter or be picked up  in  the  medium,  which  might 
have  different  statistics. The modeling of the noise as uncorrelated  from  one  sample to  the next 
may  seem  unrealistic.  In  principle, a white noise sequence like this  results  when  the  sampling 
is preceded by an  anti-aliasing  filter that  has a transfer  function  with a rectangular  shape  and a 
bandwidth  equal t o  one-half the  sampling  rate.  In  practice, of course,  no  causal  analog  filter  has 
a rectangular  transfer  function. A practical  anti-aliasing filter. has a bandwidth  that is  somewhat 
smaller  than  one-half  the  sampling  rate  and  has  finite roll-off in  its  transfer  function.  Thus, in a 
practical  receiver, the noise  would have  some  correlation  from  one  sample to  the next  and would 
have a variance  somewhat  smaller  than  the NoI(2T) that we use in our  model. It will be  noted  that 
our  simple noise model is pessimistic  in  that  it uses a too-large  variance  and is optimistic  in  that is 
assumes  uncorrelated noise samples.  Experience  shows that  the pessimism  approximately  cancels 
the  optimism.  Within  the  loop  there is low-pass filtering,  which  comes  in  the  form of averaging, 
and  this  additional  filtering  greatly  reduces  the  contribution of that  part of the noise  lying in the 
frequency  domain close to the  band edges of the  anti-aliasing  filter. So that  part of the noise that  we 
have inaccurately  modeled is later  filtered  out;  the  fact  that  our  modeling of it was  flawed  becomes 
inconsequential.  In  summary,  then, we use  what  may  seem like an over-simplified  model for noise, 
but  this  model  leads to  good,  approximate  results. 

The  output of the  Numerically-Controlled  Oscillator (NCO) is  modeled as 

J z c o s  [wk + B(k)]  

The  output of the  upper  (quadrature)  multiplier is of the  form 

d F s i n 4 ( k )  + n Q ( k ) .  
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The loop  phase  error is denoted 
$ ( k )  = O ( k )  - B ( k ) .  

There is also a sum-frequency  signal  component,  but  it is subsequently  filtered  out,  and so we 
feel free to  ignore  it  here. The  quadrature noise n ~ ( k )  is a sequence of zero-mean,  Gaussian, 
independent noise samples,  each of variance Nol(2T) .  

Thc local  oscillator  input  to  the lower (in-phase)  multiplier  comes  from  the  NCO,  but  with a 
phase  delay of 90"; this local  oscillator is of the form 

JZsin [wk + ~ ( k ) ]  . 

The  output of the lower (in-phase)  multiplier is of the form 

dFcos$(k )  + n1(k ) .  

The  in-phase noise n l ( k )  is a scquence  of  zero-mcan,  Gaussian,  independent noise samples,  each of 
variance Nol(2T).  The cross-correlation  between  in-phase  and  quadrature  noise is very  small. 

A  typical  spacecraft receiver must  operate over a large  dynamic  range.  In  order  that  the loop 
bandwidth  and  loop  damping  factor  not  vary wildly, we must  control  the  signal level within  the 
loop. In  practice, we remove most,  but  not  all, of the signal-level variation  using  Automatic  Gain 
Control (AGC). This is accomplished by the  signal  processing  described  here. The  quadrature 
samples  are  averagcd, M samples  at a time;  this  has  thc effect of multiplying  the  noise  variance 
by the  factor 1/M. The  taking of an average is a kind of low-pass  filtering;  and so, of course,  the 
noise variance  decreases.  In  parallel,  the  in-phase  samples  are  averaged, M samples at a time.  The 
sum of thc  squares of these  two  parallel  averages is computed.  This  sum  has  an  expected value 
of P + N o / ( M T ) .  This  sum is further  averaged in order t o  get a power indicator  with a small 
deviation. The reader  may well wondcr  why we don't  do all the  averaging before the  nonlinear 
operation of squaring. If  we did  that, we would  remove all the signal-level  variation. As will  be 
explained  in  more  detail  later,  it is advantageous to  leave some  signal-level  variation  because  it gives 
the receiver a useful adaptive  capability-the receiver can  automatically  narrow  the  loop  bandwidth 
in  response to   an  unusually weak signal. The AGC signal  processing then  computes a factor G as 
the  reciprocal  square-root of the averaged sum.  That is to  say, 

The  output  of  the  quadrature  multiplier is then  scalcd by this  factor G (using  the  second  multiplier 
in  the  quadrature  branch of Figure 1). The  rcsult of this scaling., which is the  input  to  the  loop 
filter, is denoted z (k )  and is of the form 

z ( k )  = as in$(k)  + n ~ ( k ) .  (3) 

The suppression  factor CY is given  by 

The noise n , ~ ( k )  at  the  input  to  the loop  filter is a sequence of zero-mean,  Gaussian,  independent 
noise samples,  each of variance G2 . No/(2T)  = (1 - a2)M/2 .  

When  the loop is in phase-lock, $ ( k )  << 1 radian,  and  sin$(k) M $(IC). Under  these  cir- 
cumstances,  the  incoming  phase O ( k )  and  the  tracking  phase B(k)  have a linear,  time-invariant 
relationship, as depicted  in  Figure 2. From this  figure,  it  can  be  seen  that  the  tracking  phase g ( k )  
can  be  thought of as  the low-pass  filtering of the  sum 



where the low-pass  filter has a (discrete-time)  transfer  function given by 

f fF(z)  
( z  - 1) + a F ( z ) .  

The loop  filter  has a (discrete-time)  transfer  that we denote F ( z ) ,  the  form of which  is  discussed 
below. The scaled noise n c ( k ) / a  has  variance NoI(2PT).  

Figure 2: Approximate  linear,  time-invariant  relationship  between O(k)  and 8 ( k )  during phase-lock. 

Two  types of loop  filter  are  considered in this  paper,  one  with  perfect  integrator  and  one  with 
imperfect  integrator.  The  corresponding  loop  filter  (discrete-time)  transfer  functions  are 

{ 
~ 1 z - l  + K Z  '5 perfect  integrator 

F ( z )  = (5) 
~ z - 1  . imperfect  integrator. 

We now want t o  evaluate  the  transfer  function of the low-pass  filter that  characterizes  the  relation- 
ship of Figure 2. This is most  easily  done if  we use the  continuous-update  approximation. [l] This 
approximation follows from  the  substitution 

z -  1 
T - + s ,  

so that we remove the  z-transform  variable  and  insert  the  Laplace  transform  variable s. In  addition, 
we ignore z wherever  it  occurs  outside of the difference z-1. This  continuous-update  approximation 
is valid  whenever the  product of T and  the loop  bandwidth is less than  about  0.1.  With  this 
approximation  the  phase-locked  loop  transfer  function  becomes 

{ 
s2+aKls+akz aKls+aK perfect  integrator 

71s2+(l+aKTz)s+aK imperfect  integrator. 
H ( s )  = (6) 

aKr2s+aK 

For both  types of loop  filters  considered in this  paper,  the loop  transfer  function is second-order, 
which is typical of spacecraft  receivers. The noise-equivalent  loop bandwidth B may  be  found  from 
H ( s ) .  Since H(O) = 1, 

I? = Jom lH(,727rf) 12 d f .  (7)  

Eq. (7)  has  been  evaluated for both perfect  integrating  loop  filters [l] and  imperfect  integrating 
loop  filters  [2]: 

B =  { (8) 

aK:+K2 
4Ki perfect  integrator 

imperfect  integrator. 
a K  T ~ + o ~ K T ~  

4 



Another  important  parameter for a second-order  control  loop is the  damping  factor C,  

+ 6 perfect  integrator 

e imperfect  integrator. 
(9) 

By way of example, four  specific  phase-locked  loops are  considered  in  this  paper.  They  are  listed 
in Table 1. Loops L1 and L3 have  perfect  integrator  loop  filters.  Loops Lz and L4 have  imperfect 
integrator  loop  filters.  For all loops  considered  in this  paper, we use M = 8 and T-' = 75,000 s-'. 

Both L3 arid { depend  on  the signal-to-noise  spectral  density  ratio PINO. This is because  they 
depend  on a and Q is a function of PINO, as seen in Eq. (4). Figure  3  plots B and  Figure  4  plots 
( as a function of PINO for the loops of Table  1. For  loops L1 and  La,  the loop bandwidth is 
approximately  the  same  function of PINo; for large  values of PINO, the  asymptote is B = 90 Hz. 
For  loops L3 and  L4,  the  loop  bandwidth is approximately  the  same  function of PINO; for large 
values of PINO, the  asymptote is B = 200 Hz. The loop  damping  factor is approximately  the  same 
function  of'P/No for all four  loops. 

. .  

Loop  Integration 

L1 perfect 

L2 imperfect 

L3 perfect 

L4 imperfect 

Parameters 

K1 = 342 
Kz = 6190 

K = 2.2 x 107 
71 = 3556 

7 2  = 0.0556 

K1 = 760 
K2 = 30600 

K = 3.0 x 107 
7-1 = 1000 
7 2  = 0.025 

Table  1: The four  loops  considered  in this  paper. 

There is always a trade-off  in  selecting a loop  bandwidth.  With a small B we minimize the 
effect of noise  on  our  loop,  and  with a large B we get  better  tracking of the  incoming  signal  phase. 
(Recall that  the  tracking  phase is essentially a low-pass filtering of the  incoming  signal  phase  plus 
noise.)  For the phase-locked  carrier  loop of a spacecraft  receiver,  it is desirable to  have the  kind of 
loop  bandwidth  variation  shown in Figure  3. [3] For large PINO, we want a large B in order to  get 
good  signal  tracking.  For a small PINO, we want a relatively  small B so that  the signal-to-noise 
ratio  in  the loop is maximized for the available PINO. The received PINO might  vary over  several 
tens of decibels  during  the life of the  spacecraft,  but we don't  want B to  also  vary by several 
orders of magnitude.  Instead, we seek a milder  variation in B ;  and  this is achieved  with  the AGC 
signal  processing  already  described for a judicious choice  for the  product M T .  The variation in C is 
incidental;  it  accompanies  the  variation in B.  The  exact  value of C is never important,  but  typically 
we like it  not  to  stray  too  far  from 1. 

For a given loop  bandwidth, a perfect  integrator  results  in  better  tracking  performance  than 
does an imperfect  integrator. [4] For  example,  when  the  arriving  signal  has a constant frequency 
offset S f  from the best-lock  frequency of the phase-locked  loop, a perfect  integrator  results  in  zero 
phase  error  but  an  imperfect  integrator gives a phase  error of 27r6,f/((uK),  where aK is the loop 
gain. 
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Figure  3:  Noise-equivalent  loop  bandwidth; M = 8, T-l = 75,000 s-l 
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Figure 4: Loop damping  factor; M = 8, T-’ = 75,000 s-l 



3 Best-Lock Frequency  Drift  in an Idling  Loop 
It  should  not be concluded,  though,  that  it is always  better t o  use a perfect  integrator.  There is 
one  respect in which a loop  with  imperfect  integrator is better.  When  the  loop  idles  (;.e., when 
noise alone is at  the  input)  and for a given  loop bandwidth,  the best-lock  frequency of the loop 
will drift less in  response to  noise at  its  input if the loop  filter  integration is imperfect,  rather  than 
perfect.  Spacecraft  receivers  sometimes  must  idle for many  hours  during a solar  conjunction 01’ 

while waiting  for a ground  tracking  station  to become  available. When a direct line-of-sight radio 
connection  again  becomes  possible  between a ground-based  transmitter  and  the  spacecraft  receiver, 
it is often  important  that  the receiver acquire  phase-lock as quickly as possible. To get quick 
acquisition, we must know the best-lock  frequency of the  spacecraft  receiver t o  good  accuracy. 
Therefore, we would like the best-lock  frequency  not to  have  drifted  much  since  the  end of the 
previous  communications  session. 

In  this  section of the  paper, we investigate  the  drift of best-lock  frequency  caused  by thermal 
noise acting  on  an  idling  loop.  It  should  bc  mentioned  that  this is not  the  only  cause of best-lock 
frequency drift;  there will always  be  some  drift due  to  temperature  variation of the receiver  crystal 
oscillators. 

When  the receiver  idles, so that  noise  alone is at the  loop  input, P = 0, and  this implies a = 0. 
The loop is effectively  open.  The  input z ( k )  to  the loop  filter  is,  from Eq. ( 3 ) ,  nc(k) ,  whose  variance 
is in this case just M / 2 .  

When  the loop  filter is a perfect  integrator,  it is possible to calculate  the  root-mean-square  (rms) 
best-lock  frequency offset r ~ f  due  to noise at  the  input of the  loop  filter.  In  this  case,  the  loop  filter 
output y(k) is related  to z ( k )  by 

k - 1  

y(k)  = K1z(k  - 1) + K2T): z ( i ) .  
i=O 

Loss-of-lock corresponds to  k = 0. Substituting n c ( k )  (with a variance of M / 2 )  for z ( k )  gives a 
variance 0; on y(k)  of 

0; = (K;  + 2K1K2T + k K2T ) -. 2 2 2 M  
2 

Since y(k)  is an  angular  frequency in units of rad/s, a f  can  be  found  from 

Denoting  the  time  since loss-of-lock as t ,  
t = kT, 

we can  rewrite  Eq. (12) as 

When  the loop  filter is an imperfect  integrator,  no  such  simple  analytical  solution for uf  exists, 
but  the  action of the  loop  filter is easily  simulated.  The  loop  filter  output y(k) and  input z ( k )  are 
related by the difference  equation 

-r1y(k) + (T - q ) y ( k  - 1) = K72z(k  - 1) + K ( T  - T & 0  - 2).  (15) 

As before, z ( k )  = n ~ ( k )  with a variance of M / 2 .  
The  rms best-lock  frequency offset of  is plotted in Figure 5 for loops L1 and La and  in  Figure 6 

for loops L3 and Ld. For the loops  with  perfect  integrator (L1 and L3),  Eq. (14) was  used.  For 
the loops  with  imperfect  integrator (La and  L4),  simulation  results  are  plotted.  From  either  of 
these  figures, we see  that, for two  loops  with  comparable  bandwidths,  the  imperfect  integrator 
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Figure 5 :  Best-lock  frequency  drift for loops L1 and Lz; M = 8, T” = 75,000 s-’ 
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Figure 6: Best-lock  frequency  drift for loops L3 and Lq; M = 8, T-l = 75,000 s-l 

8 



loop  experiences less drift of the  best-lock frequency  in response to noise while idling than  does  the 
perfect  integrator  loop.  In  comparing  Figures 5 and 6, we see that a loop of a given type  experiences 
less drift of the best-lock  frequcncy  in rcsponse t o  noise if it  has a srnallcr loop  barldwidth. 

In  principle,  it is possible to reduce  the best-lock frequency  drift  due to noise by decreasing 
M (the  number of samples  that  are  averaged,  as  part of the AGC signal  processing, in each of 
the  quadrature  channels  before  the  sum-of-squares  operation).  But  decreasing M can  result in a 
too-strong  dependence of 13 and < on PINO. As explained  in the previous  section, we want B and 
< to have a mild  dependence  on PINO, as typified by Figure 3. A stronger  dependence  on PINO 
would mean, for example,  that < is far  from 1.0 (critical  damping)  much of the  time. (A < that is 
close to  1.0 results in good  loop  transient  response.) So decreasing M is not  really  an  option. 

4 Flexible Loop Filter  Implementation 
The  previous  sections have demonstrated  that  the choice between  perfect  and  imperfect  integrator 
depends  on  the  relative  importance of minimizing  best-lock  frequency  drift  and  maximizing  tracking 
performance. For a given space  mission, we may  want a perfect  integrating  loop filter for some 
phases of the  mission,  during which tracking  performance  is  the  paramount  criterion,  and for other 
phases we may  want  an  imperfect  integrating  loop filter to  ensure  fast  acquisition following periods 
of idling. 

We propose a loop filter structure for implementation in digital  hardware,  featuring coefficients 
set by registers, that  can be configured for either  perfect  or  imperfect  integration.  Figure 7 shows 
this  structure.  In  that  figure,  the final delay  element  represents  the  transport  delay of the loop. 
The flexibility arises  from  the  fact  that  the coefficients are  set by registers  and,  therefore,  can  be 
altcrcd  even  after  the  launch of the  spacecraft. 

Figure 7: Loop filter implementation. 

The  transfer  function of the  loop filter shown  in  Figure 7 is given  by 

This  transfer  function  represents a perfect integrator  when 
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Alternatively,  the  general  transfer  function for the  implementation of Figure  7  may  be  put  in  the 
form 

This  matches  the  form of an  imperfect  integrator  when 

Solving for the  parameters A l l  A2 and A3 givcs 

A1 = KT-72 
A2 = K tc1- =] T-Tl } (18) 

A3 = 1- E ,  

Herlcc, tllc axle loop filt,er. structure  shown irl Figure 7 produces a perfect  integrator  when  the 
parameters A I ,  A2 and A3 are  assigned  the values  given  in Eqs.  (16).  When,  instead,  the  parameters 
are  assigned values according to  Eqs. (18), an  imperfect  integrator is effected. 

Table  2 shows the  appropriate values of AI,  A2 and A3 for each of the four loops of Table 1. 
These  values  are for the case of T" = 75,000 s-'. 

A few comments  are  in  order  about  the precision with which the  parameters  should  be  set. A 
precision of about f l% in  the  setting of AI and A2 will result in a precision of about i l %  on 
B. The loop design  is  much  more  sensitive to  the  value of As. For the loops L1 and L3, which 
have perfect  integrator  loop  filters, A3 should  equal exactly 1. For the  loops L2 and Lq, which have 
imperfect  integrator  loop  filters, A3 needs to  equal 1 minus a small, precise amount, 

71 

A3 = 1 - E ,  (19) 

where 

€ = {  3.750 x lo-' L2 1.333 X lo-' L4. 

E should be set  with a precision of about 51% in  order t o  get a precision of about &l% on B .  

L1 342.0 0.0825 1.00000000000 
L2 343.9 0.0825 0.99999999625 
L3 760.0 0.4080 1.00000000000 
L4 749.6 0.4000 0.99999998666 

Table 2: A I ,  A2 and A3 for the  loops  of  Table 1 with T-l = 75,000 s-'. 

5 Conclusions 
The  best-lock  frequency of an idling phase-locked loop will drift  in  response to  noise at the receiver 
input.  This  drift is worse for a loop  with  perfect  integrator than  it is for one  with  imperfect 
integrator. On the  other  hand, a loop  with  perfect  integrator offers better  tracking  performance. 
We have  proposed a flexiblc loop filter  design that  accommodates  both  types of loops.  The  loop is 
implemented in digital  hardware  but  with coefficients set  in  registers. In this way, the loop filter 
can  be  switched  between  perfect  integrator  and  imperfect  integrator for different  phases of a space 
mission. 
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